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Abstract

In this paper, we introduce an information-theoretic approach using building floor vibrations to detect
and quantify the building structural damage induced by earthquakes. Previous studies on vibration-based
earthquake-induced structural damage diagnosis can be divided into two categories: physics-based meth-
ods and data-driven methods. However, the physics-based methods require a lot of prior knowledge about
the building structure, which is difficult to be obtained in post-earthquake scenarios. The data-driven ap-
proaches detect structural damages using statistical methods to analyze collected structural vibration
signals. However, many data-driven methods cannot provide insights into the relationship between ex-
tracted features and the physical structural dynamic characteristics. In this paper, we model the process
of wave propagation inside building structures as information exchanges and propose an information
theoretic approach to extract the representation of information exchanges between the vibration signals
on two building floors. We then use the information exchanges as features to detect and quantify the
building’s structural damage. The advantages of this method are 1) it eliminates the requirement of prior
structural knowledge, 2) it allows group analysis of noisy vibration data and provides more detailed in-
formation about structural changes, 3) information-theoretic features are physically related to structural
damage state, which means the method is not a black-box model and more robust to noise. We evaluate
our algorithm using numerical simulation data from 5 buildings under 40 different ground motions. Our
method achieves upto 15.48% improvement in damage detection compared to benchmark methods and
upto 2.5X reduction in the error of damage estimation.

1 Introduction
Accurate and timely building structural damage diagnosis is important to save lives and expedite city
reconstruction process in post-earthquake scenarios. Damage diagnosis techniques can help identifying
safe shelters to temporally move in, assessing the building safety conditions for evacuation, and deter-
mining to rebuild/repair/reserve buildings in an earthquake zone. For example, on the 2011 Tohoku
earthquake, there are more than 120,000 buildings destroyed, 278,000 half-destroyed and 726,000 par-
tially destroyed [17]. A fast and accurate inspection of these buildings is critical to accelerate the city
reconstruction.

Current practices of building structural damage diagnosis such as manual inspection are mostly la-
bor intensive, time consuming, or error prone. For example, in the Tohoku earthquake, it took many
experts more than 1 year to get a full statistics on the overall building damage through visual inspec-
tion [17, 28]. Given the drawbacks of current post-earthquake reconnaissance practice, new sensor-based
techniques have been actively explored to automate the earthquake-induced building structural damage
diagnosis [24, 38].

Recently, people developed vibration-based structural damage diagnosis methods. Based on auto-
matically collected building vibrations during an earthquake, these methods provide the accuracy and
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speed needed to quickly evaluate the structural health of a building [7, 3, 23, 12]. Most of the vibration-
based methods fall into two categories: physics-based methods [2, 8, 34, 35] and data-driven meth-
ods [14, 29, 30]. However, the physics-based methods require much prior knowledge about the building
structure (e.g. building geometry and material properties), which is difficult to be obtained in the post-
earthquake scenario. The data-driven methods utilize statistical models to learn a mapping from the col-
lected vibrations to the structural damage states. Nevertheless, in post-earthquake scenario, the collected
building vibration data contains complex environmental noises introduced by the fast-changing seismic
dynamics. Moreover, conventional data-driven methods require dense sensor instrumentation to acquire
detailed and sufficient information for structural damage detection [21, 22], which is labor-intensive and
expensive.

To address these challenges, we introduce an information-theoretic approach to detect and quantify
the earthquake-induced building structural damage with sparsely deployed vibration sensors and few
prior knowledge about buildings. Our method is based on the premises that wave propagation inside
structures can be modeled as the process of information exchanges between adjacent locations, and the
structural damage will alter information exchange patterns between two locations. By detecting this
change, our method detects and quantifies the damage state of each story inside the building. In this
paper, we extract information exchanges using the collected vibration signals at each floor to detect
story-level damage states, but the method is generally applicable to any spatial granularity. We extract
the information exchanges between the two vibration signals of the floor and the ceiling of each story
based on the principles of information theory. With the information exchanges as features of each story,
we then estimate the damage state using machine learning techniques. Instead of detecting damages
at each sensor location, the presented method detects the damages between sensor pairs, which allows
sparsely deployed sensors to infer the structural damages. This method does not require prior knowledge
about building. Besides, the bi-directional information exchanges between two collected vibration sig-
nals are extracted to provide higher-resolution information about structural properties than conventional
correlation-based features [30]. Moreover, we show the analytical relationship between information ex-
changes and the structural damage of each story to demonstrate that the information exchange is an
effective indicator of the structural damage with physical significance.

This paper has 3 key contributions:

1. To best of our knowledge, we are the first to model the wave propagation inside the building as
information exchanges as defined in information theory, which allows the analysis of groups of
noisy vibration data and provides more detailed information about the structural changes.

2. We present the physical insights of the data-driven information-theoretic approach and the ana-
lytical relationship between the information exchanges and the structural properties, which gives
theoretical supports to using information exchanges to detect and quantify the structural damage
state without prior knowledge of the structure.

3. We evaluate our algorithm using numerical simulation data of multiple buildings with varying
heights subjected to multiple earthquake excitations. As a result, our approach achieves up to
15.48% improvement in the damage prediction accuracy.

In this paper, we first provide the physical insight of representing the wave propagation process
between adjacent floors as information exchanges in Section 2. In Section 3, we present the analyti-
cal relationships between the story-level structural properties and the extracted information exchanges.
Then the algorithm of extracting information exchanges as features to detect and quantify the structural
damage state is introduced in Section 4. In Section 5, we evaluate our algorithm with data from multiple
buildings under a series of earthquake excitations. Finally, Section 6 concludes the paper.

2 Physical Insights Of Information Exchanges Inside Structures
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This section provides the physical insights of representing the seismic wave propagation as a process
of information exchanges between floors inside a building. When the vibration wave propagates from the
floor to the ceiling of one story, the waveform is distorted due to energy dissipation inside the story [39].
This wave distortion can be represented by information exchange. The changes of information exchange
reflect the changes of energy dissipation, which depends on the changes of the structural properties.
Therefore, by extracting this information, the altering of structural properties can be detected. We can
further detect and quantify the structural damages inside the building.

The process of wave propagation inside a building structural system is similar to the process of
information exchanges in communication systems [25, 19, 42]. As Figure 1 shows, when earthquake
happens, the seismic wave propagates from one location i to the adjacent location j through the structure
between the two locations. In this process, there is noise from the non-structural components or other
sources which interfere the wave propagation. Similarly, in the communication system, the information
is encoded by a transmitter, and sent from the transmitter to the receiver through the channel. In this
communication process, the signal may be distorted by the noise when passing through the channel. In
structural systems, the structure between location i and j corresponds to the communication channel.
When the structure between the locations i and j is damaged, the damage changes the distortion of
wave propagation. That is, when the structural damage happens, the difference between information
sent at i and received at j, which is also the difference between the vibrations observed at i and j will be
different from before damage. The change of the information exchange pattern from i to j indicates the
structural damage. In the field of communication system, people developed information theory to study
the information exchanges process [25, 19]. Here we model and analyze the wave propagation process
in the structural system using information theory. The information exchanges are bi-directional between
i and j. When structural property changes, the information exchanges in two directions changes. The
changes are different in different directions, which is discussed in Section 3. Therefore, we introduce
directed information to quantify the directional information exchanges between two structural response
signals.

Figure 1: The analogy between wave propagation inside the structural system and information exchanges in
the communication system.

When earthquake happens, the seismic wave propagates inside the building. In each story, the seismic
waves propagating through the building could be separated into two components: up-going and down-
going components. We consider a conceptual model as shown in Figure 2. Whenever the up-going and
down-going waves cross a floor interface, they are partly reflected and partly transmitted into the next
floor [39]. The transmitted wave would be attenuated along with the propagation path with multiple
times of transmissions and reflections. The reflected component would be partly reflected back and
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partly transmitted in the lower floor and finally attenuate as well. Therefore, the waves observed in the
floor and the ceiling are different from each other because the wave is distorted when passing through
the structures between them. The wave distortion depends on the properties of the structure that the
seismic wave passes by. Meanwhile, the wave distortion between two locations can be represented
by information exchanges between two locations’ vibrations. Therefore, the structural information is
embedded in the information exchanges between the two sensing locations.

Figure 2: Seismic wave propagation inside the building structure. (a) In a N -story building, the seismic
propagate inside the building by pass from one story to the next. (b) The seismic wave propagated inside
the building can be decomposed into two parts: up-going component and down-going component. At each
interface of floor, the propagated wave will be transmit and reflected. The ratio of transmission and reflection
is related to the structure of the floor.

When there is earthquake-induced structural damage in some story, the structural properties of the
story change, which also change the information exchanges pattern between the ceiling and the floor vi-
brations. Since the information about the structure is contained in the wave distortion, the wave distortion
between the floor and the ceiling change with different structural damages. For example, given a story,
suppose there is a crack appearing in one of the columns during the earthquake. When the seismic wave
passes through the column, the energy dissipation becomes different from that in a well-conditioned col-
umn due to the crack. Compared to when there is no damage in the column, the wave distortion between
the ceiling and the floor carries changes, thus, the information exchange between two the ceiling and the
floor vibrations also changes.

By extracting the changes of the information exchanges inside each story, we can detect the changes
of the structural properties of the story, and therefore detect and quantify the structural damage state.

3 Analytical interpretation of the relationship between directed in-
formation and structural parameters
In this section, we discuss the analytical relationship between the information exchanges and the struc-
tural properties. We first introduce the concept of directed information to quantify the information ex-
changes between two vibration signals. For each story, the directed information is extracted from the
vibrations of the floor and the ceiling of the story. We present the physical relationship between the
extracted directed information and structural properties of the corresponding story.
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3.1 Directed Information
The change of information exchange patterns between the vibration signals at two floors indicates the
change of structural properties between the two floors, as Section 2 discussed. Here we use directed
information from the field of information theory to quantify the information exchanges between two
vibration signals. The information theory is developed to model the information (or uncertainties) con-
tained in random variables (or processes), e.g. seismic wave-induced floor vibrations [43]. Directed
information is a concept developed in information theory to measure the directional shared information
between two signals.

Directed information is first introduced based on the concept of entropy and mutual information in the
field of information theory [13, 25]. In general, entropy quantifies the uncertainty (lack of information)
of a random variable. As an example, let random variables X and Y represent the number obtained by
tossing a 4-side and 8-side dies, respectively. The entropy of Y will be higher than X , since Y has lower
predictability, which means Y has higher uncertainty. When there is dependency relationship between
two random variables, the two random variables share part of uncertainties induced by the dependency
relationship [3, 37, 6]. Mutual information quantifies this shared uncertainties. This shared information
is computed as the information gain (or reduction in uncertainties) for one variable by knowing another
related random variable and vice versa [20, 1]. As a natural counterpart, directed information depicts
the causal influence that one variable or process (source of information) has on the other variable or
process [40, 16, 15]. When there is causal influence between two random variables, directed informa-
tion is an asymmetric measure that quantifies the shared information with directionality, for example,
the information from one random variable to the other random variable. Therefore, compared to the
conventional correlation-based features merely focusing on the co-occurrence of two random variables’
statistical characteristics, directed information is a more precise measurement providing high-resolution
information between two random variables/processes. The concept of directed information has been
widely applied in different fields, including identifying the pairwise influence in gene networks [33],
neuroscience [41], and stock markets [15].

In our problem, we define two stochastic processes Xi
t1:t2 and Xj

t1:t2 to represent building vibrations
at two different floors i and j from the time point t1 to the time point t2, respectively. We define the
directed information between them using their joint probability density function (PDF). If Xi

t1:t2 and
Xj
t1:t2 are independent, their joint distribution is equivalent to the product of their marginal distributions,

P (Xi
t1:t2 ;Xj

t1:t2) = P (Xi
t1:t2)P (Xj

t1:t2). (1)

Then, the mutual information of Xi
t1:t2 and Xj

t1:t2 (I(Xi
t1:t2 ;Xj

t1:t2)) is quantified as the distance (or
information discrepancy) between the joint PDF and the product of the marginals by using the concept
of Kullback-Leibler divergence (i.e., the mutual information measures the degree of dependency). The
distance here represents the information gain when we revise our belief from that Xi

t1:t2 and Xj
t1:t2 are

independent to that Xi
t1:t2 and Xj

t1:t2 are dependent:

I(Xi
t1:t2 ;Xj

t1:t2) = E[log
P (Xi

t1:t2 ;Xj
t1:t2)

P (Xi
t1:t2)P (Xj

t1:t2)
]. (2)

Mutual information is always non-negative, and it becomes zero whenXi
t1:t2 andXj

t1:t2 are independent.
This mutual information does not represent any directionality in information flow. Hence, an alternative
factorization in terms of the joint PDF has been introduced to represent the directionality of information
feedforward and feedback between Xi

t1:t2 and Xj
t1:t2 [25]

P (Xi
t1:t2 ;Xj

t1:t2) =
←−
P (Xi

t1:t2 |X
j
t1:t2)

−→
P (Xj

t1:t2 |X
i
t1:t2), (3)

where
←−
P (Xi

t1:t2 |X
j
t1:t2) =

∏t2
t=t1

P (Xi
t+1|Xi

t1:t;X
j
t1:t+1) and

−→
P (Xj

t1:t2 |X
i
t1:t2) =

∏t2
t=t1

P (Xj
t+1|

Xj
t1:t;X

i
t1:t+1). If we considerXi

t1:t2 as an input andXj
t1:t2 as an output,

←−
P (Xi

t1:t2 |X
j
t1:t2) and

−→
P (Xj

t1:t2
|Xi

t1:t2) correspond to information from j to i and from i to j, respectively.
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Similar to the definition of the mutual information where we compare the true joint PDF to the PDF
computed as if the processes are independent, the directed information fromXi

t1:t2 toXj
t1:t2 is defined as

the distribution divergence between the true joint distribution and the distribution computed as if Xi
t1:t2

depends on Xj
t1:t2 but not vice versa. When Xj

t1:t2 does not depend on Xi
t1:t2 ,

−→
P (Xj

t1:t2 |X
i
t1:t2) =

P (Xj
t1:t2). Thus, the directed information is defined as:

I(Xi
t1:t2 → Xj

t1:t2) = E[log
P (Xi

t1:t2 , X
j
t1:t2)

←−
P (Xi

t1:t2 |X
j
t1:t2)P (Xj

t1:t2)
]. (4)

The directed information is smaller than or equivalent to the mutual information. Note that I(Xi
t1:t2 →

Xj
t1:t2) 6= I(Xj

t1:t2 → Xi
t1:t2). By the definition of entropy and conditional entropy, the directed infor-

mation is expressed as follows:

I(Xi
t1:t2 → Xj

t1:t2) = H(Xj
t1:t2)−H(Xj

t1:t2 ||X
i
t1:t2), (5)

where

H(Xj
t1:t2) =

t2∑
t=t1

H(Xj
t+1|X

j
t1:t)

H(Xj
t1:t2 ||X

i
t1:t2) =

t2∑
t=t1

H(Xj
t+1|X

j
t1:t, X

i
t1:t+1).

The entropy H(Xj
t1:t2) and H(Xj

t1:t2 ||X
i
t1:t2) are functionals of the discrete distribution of variables

Xj
t1:t2 and Xj

t+1|X
j
t1:t, X

i
t1:t+1 for t ∈ {t1, · · · , t2}. When estimating directed information, we use

Equation 5 for computational efficiency, instead of Equation 4 that involves estimating the joint distribu-
tion. The entropy values are estimated using the minimax rate-optimal estimators under l2 loss [16]. The
minimax estimator minimizes the maximum loss function between estimator and functional of real dis-
tribution. The loss function is l2 norm of difference between estimator and functional of real distribution.
We use empirical D-tuple joint distribution based on the collected data to estimate the functionals of real
distribution, and it has been proved that empirical joint distribution of D-tuple converges to the true joint
distribution [15, 16]. The estimator converges faster and has less mean square error than conventional
MLE (Maximum Likelihood Estimator) [15, 16].

3.2 Relationship between Directed Information and Structural Physical Proper-
ties
In this section, we show the analytical relationship between the physical properties of building structure
and the directed information at each story. The results indicate that directed information extracted be-
tween adjacent floor accelerations reflects the structural properties (e.g. stiffness, damping and mass) of
the two adjacent two floors, and is a potential damage indicator.

Some assumptions are made to simplify the problem and highlight the important characteristics of
the relationship between directed information and structural physical properties. We model the building
as a linear multi-degree of freedom system as shown in Figure 3. In the building, the mass is concentrated
at each floor. The stiffness of the building is determined by the massless walls and columns.

Given anN -story building, each story is composed of a floor and a ceiling. We collect the earthquake-
induced acceleration signal at each floor. We denote the collected acceleration at the nth floor as Ẍn.
Similarly, we denote the velocity and relative displacement at the nth floor as Ẋn and Xn, respectively.
Given a story n in the building, where 1 ≤ n ≤ N + 1, the acceleration at the ceiling of the nth story is
also the acceleration at the floor of the (n + 1)th story. We assume the floor acceleration at the base is
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Figure 3: Structural model of a building under the earthquake excitation Ẍg.

the same as the ground motion acceleration, i.e. Ẍ1 = Ẍg , where Ẍg is the earthquake-induced ground
motion acceleration. We denote the mass, shear stiffness, and damping coefficients for the nth story as
mn, kn and cn, respectively, as shown in Figure 3.

Denote the mass, stiffness and damping matrices of the building as M,C, and K, and use X to
represent the displacement matrix, i.e. X = [X2, · · · , XN+1]T . The equation of motion is then

MẌ + CẊ + KX = −MIẌg, (6)

where I is a vector with all elements as 1. The details of the physical properties matrices are

M =


m1 0 · · · 0

0 m2
. . .

...
...

. . . . . . 0
0 · · · 0 mN

 ,C =


c1 + c2 −c2 0 · · · 0
−c2 c2 + c3 −c3 · · · 0

...
. . . . . . . . .

...
0 · · · −cN−1 cN−1 + cN −cN
0 · · · · · · −cN cN

 ,

K =


k1 + k2 −k2 0 · · · 0
−k2 k2 + k3 −k3 · · · 0

...
. . . . . . . . .

...
0 · · · −kN−1 kN−1 + kN −kN
0 · · · · · · −kN kN


Denote Z =

[
X2, Ẋ2, · · · , XN+1, ẊN+1

]T
as a multivariate variable. Assume that there exists

a zero-mean Gaussian noise V with positive definite covariance matrix Q for floor vibrations. As-
sume the noises for different stories are independent, i.e. Q2n1,2n2

= Q2n1+1,2n2
= Q2n1+1,2n2+1 =

Q2n1,2n2+1 = 0,∀n1 6= n2 (Qi,j refers to the element in the ith row and jth column of Q). We can
transform and discretize the Equation 6, assuming zero-order hold for the ground motion Ẍg , giving

Zt+1 = AdZt + I∗Ẍg,t + Vd, (7)

where each time point represents a sample time of ∆t, Vd ∼ N(0, Qd), and

Ad = exp (A∆t); Qd =

∫ τ=∆t

τ=0

exp (Aτ)Q exp (AT τ)dτ.
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For simplicity, we denote the structural responses at the nth floor at the time point of t + 1 as Xn
t+1 =

[Xn
t+1, Ẋ

n
t+1]T . Equation 7 shows that the structural responses depend on the structural responses of

adjacent stories at the previous time point t, i.e., (⇐⇒ refers to the dependency relationship)

· · · ⇐⇒ Xn−1
t:t+1 ⇐⇒ Xn

t:t+1 ⇐⇒ Xn+1
t:t+1 ⇐⇒ · · · . (8)

With the dependency relationship described in Equation 8, the dependencies between the structural re-
sponses can be described as

Xn−1
1:t ⊥⊥ Xi

1:t|Xn
1:t,∀i > n. (9)

Equation 9 represents that given the vibration at the nth floor, the vibration at the lower floor (< n)
is independent with the vibration at the higher floor (> n). Therefore, we have the lemma describing
the directed information from (n + 1)th floor to nth floor at the time point of t is independent of other
stories’ information:

Lemma 1 The directed information at time point of t from the n+ 1th floor to nth floor is independent
with the information from other nonadjacent floors, i.e.

H(Xn
t+1|Xn

1:t)−H(Xn
t+1|Xn

1:t,X
n+1
1:t+1)

= H(Xn
t+1|Xn

1:t,X
n+2
1:t ,X

n−1
1:t )−H(Xn

t+1|Xn
1:t,X

n+1
1:t+1,X

n+2
1:t ,X

n−1
1:t ).

With Lemma 1, we can obtain the directed information from (n+ 1)th floor to nth floor using structural
properties and the white noises. Given Ẍg,1:t, Vd ∼ N(0, Qd), and the starting states Xn

0 ,∀n, since lin-
ear transform of a Gaussian variable is still Gaussian variable, Xn+1

t subjects to a Gaussian distribution.
Denote the (2n − 1)th and 2nth rows of the matrix Ad as Ad(2n − 1 : 2n, ·) = [A1

d, · · · , ANd ], where
And has size of 2× 2. Similarly, denote Md(2n− 1 : 2n, ·) = [M1

d , · · · ,MN
d ] and I∗(2n− 1 : 2n, ·) =

[I∗n, · · · , I∗N ]. Therefore, the conditional variables are expressed as

Xn
t+1|Xn

1:t,X
n+2
1:t ,X

n−1
1:t

= AndX
n
t +An−1

d Xn−1
t +

(
An+1
d

)t
Xn+1

0 + f1(And , A
n+1
d , An+2

d ,Xn
1:t,X

n+2
1:t )

+

t−1∑
j=1

(
An+1
d

)j
V n+1
d + I∗nẌg + V nd ,

Xn
t+1|Xn

1:t,X
n+1
1:t+1,X

n+2
1:t ,X

n−1
1:t = AndX

n
t +An−1

d Xn−1
t +An+1

d Xn+1
t + I∗nẌg + V nd .

where f1 is an implicit function involving with the influence of the structural vibrations at nth and n+2th
floor. And can be approximated as follows by Euler’s method:

And ≈

 1 ∆t

−kn + kn+1

mn
∆t 1− cn + cn+1

mn

T .
The variance matrices for the two conditional distributions are

V ar(Xn
t+1|Xn

1:t,X
n+2
1:t ,X

n−1
1:t ) = V ar

t−1∑
j=1

(
An+1
d

)j
V n+1
d

+ V ar(V nd ) (10)

V ar(Xn
t+1|Xn

1:t,X
n+1
1:t+1,X

n+2
1:t ,X

n−1
1:t ) = V ar(V nd ) = Qnd , (11)

8



where Qnd refers to the covariance matrix for variable Xn = [Xn
t , Ẋ

n
t ], which is obtained from Equa-

tion 7. Since it is assumed that the process noise for different floor responses are independent, we can
obtain

Qnd =

∫ τ=∆t

τ=0

An,nd Qn(An,nd )T dτ +O(∆t3),

where

Aj,nd =

[
Ad(2n− 1, 2j − 1) Ad(2n− 1, 2j − 1)

Ad(2n, 2j) Ad(2n, 2j)

]
, Qn =

[
Cov(Ẋn, Ẋn) Cov(Ẍn, Ẋn)

Cov(Ẋn, Ẍn) Cov(Ẍn, Ẍn)

]
.

Let Pn+1
t = V ar

[∑t−1
j=1

(
An+1
d

)j
V n+1
d

]
. Pn+1

t depends and only depends on the structural prop-
erties of the floor and the ceiling of the (n+1)th story and the Gaussian noise on the structural responses
of the ceiling of the nth story.

The entropy of multivariate Gaussian distribution with variance matrix of Q is

1

2
lndet(2πeQ). (12)

Given the definition of directed information in Equation 5, we have the directed information from (n +
1)th floor to nth floor as

I(Xn+1
1:T → Xn

1:T ) =

T∑
t=1

H(Xn
t+1|Xn

1:t)−H(Xn
t+1|Xn

1:t, X
n+1
1:t ) (13)

=

T∑
t=1

1

2
ln

det(Pn+1
t +Qnd )

detQnd
. (14)

Similarly, we obtain the inverse directed information from nth floor to (n+ 1)th floor as

I(Xn
1:T → Xn+1

1:T ) =

T∑
t=1

H(Xn+1
t+1 |X

n+1
1:t )−H(Xn+1

t+1 |X
n+1
1:t , Xn

1:t) (15)

=

T∑
t=1

1

2
ln

det(Pnt +Qn+1
d )

detQn+1
d

. (16)

By the definition of Pnt , it can be found that the directed information from (n + 1)th floor to nth floor
mainly depends on the structural properties of (n + 1)th floor and nth floor. If we directly utilize
the raw vibration signals, each Xn contains the influence of all the other stories’ vibrations and noise
during the earthquake. The above proof shows that the directed information effectively helps reduce the
noise induced by the structural changes in other inadjacent locations compared to raw vibration signals.
Meanwhile, it can be seen that the directed information from the ceiling to the floor of the nth story
is different from the directed information in inverse direction. I(Xn

1:T → Xn+1
1:T ) focuses more on the

properties of the nth floor, while I(Xn+1
1:T → Xn

1:T ) focuses more on the properties of the (n+1)th floor.
In conventional methods, the information in the two directions is combined and extracted as a feature
to infer the changes of structural properties. By differing the information by directionality, the directed
information provides more details and enables the analysis of groups of vibration signals.

4 Information-theoretic Approach For Structural Damage Diag-
nosis
Based on the physical insight and analytical relationship, we propose an information-theoretic approach
to detect and quantify the earthquake-induced structural damage using the structural vibration responses
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to earthquake excitations. In this paper, for simplicity, the approach is explained and implemented for
story-level detection and quantification, but the method can be expanded to various scales of detection
and quantification, depending on the sensor density. As Figure 4 shows, our approach includes three
steps: data collection, feature extraction, and damage modeling. In this section, we first describe the
collection of the story-level seismic structural responses and corresponding structural drift ratios. Then
we describe how to extract directed and inverse directed information between the accelerations of the
floor and ceiling of each story and compute the features. Finally, we train kernel-based support vector
machine models for damage detection and damage quantification.

Figure 4: The algorithm overview.

4.1 Data collection
We first collect structural responses to obtain sufficient data samples for damage modeling. In our
method, the accelerations at each floor are collected during the earthquake excitation. For example,
to extract the directed information as the feature of the nth story, we need the collected vibration signals
at nth floor and (n + 1)th floor. The during-earthquake structural responses depend on the dynamic
earthquake excitations and the building structural properties, as shown in Section 3.

After the acceleration data are collected, we use sliding window to separate the vibration signal for
further feature extraction. As shown in Section 3, we assume that in a short time window T , the structural
properties are consistent. We use a sliding window with the size of T and the stride of 1 to separate the
vibration signals into multiple pieces. In this way, each vibration signal is reshaped as a matrix with the
size of (l−T +1)×T matrix, where l is the length of the vibration signal. Then the directed information
is extracted from each pair of pre-processed vibration data collected from two adjacent floors.

4.2 Feature extraction
The next step is to extract the directed information from a floor to the ceiling and from a ceiling to the
floor as features of the corresponding story. To ensure the computational efficiency, the signals need

to be quantized into S level with the principle of T ≈ SD+1

lnS
, where T is the short time window, D

is the order of the Markov process of seismic-induced vibrations, which is 1 in our scenario based on
our state-space model described in Section 3. The directed information is extracted from each pair
of sliding-window vibration signals, i.e. I(Xn

kT+1:(k+1)T → Xn+1
kT+1:(k+1)T ) and I(Xn+1

kT+1:(k+1)T →
Xn
kT+1:(k+1)T ),∀k ∈ {0, · · · ,K − 1}, n ∈ {1, · · · , N − 1}. For simplicity, for each story n, we define

the directed information from the bottom floor to the ceiling as “directed information” of the nth story,
and the directed information from the ceiling to the bottom floor as “inverse directed information” of the
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nth story. After computing the directed information and inverse directed information for each sliding
window, we obtain the final directed information as well as inverse directed information sequences both
with the size of K× 1. The extracted directed information sequences contain the information about how
the structural properties change with time evolving.

Given the sliding-windowed vibration signals pair, Xn+1
kT+1:(k+1)T and Xn+1

kT+1:(k+1)T , we extend
the context-tree weighting algorithm [15] to estimate the directed information. As defined in Equa-
tion 5, to estimate the directed information I(Xn

1:T → Xn+1
1:T ), we separately estimate H(Xn+1

1:T ) and
H(Xn+1

1:T ||Xn
1:T ). After quantization, the random process becomes discrete. Define P (Xn+1

t+1 |X
n+1
1:t )

as the conditional probability mass function for Xn+1
t+1 given Xn+1

1:t , which can be estimated from the
vibration signals. We can estimate the entropy as

Ĥ(Xn+1
1:T ) =

1

T

T∑
t=1

∑
Xn+1

t+1

P (Xn+1
t+1 |X

n+1
1:t ) log

1

P (Xn+1
t+1 |X

n+1
1:t )

(17)

Ĥ(Xn+1
1:T ||X

n
1:T ) =

1

T

T∑
t=1

f(P (Xn
t+1, X

n+1
t+1 |Xn

1:t, X
n+1
1:t )), (18)

where

f(P ) = −
∑
x,y

P (x, y) logP (y|x).

To obtain the entropy and conditional entropy estimators, we employ context-tree weighting algorithm
with fixed length of T and context tree depth of D. In this algorithm, we initialize the directed infor-
mation estimator Î(Xn

1:T → Xn+1
1:T ) as 0. With the quantized sequences X̂n

1:T and X̂n+1
1:T , we define

Yt = (Xn
t , X

n+1
t ),∀t. Then ∀t ∈ {D + 1, T + 1}, in the context of Yt−D:t−1, we update the context

tree for every possible value of Yt and obtain the estimated probability mass function P (Yt|Y1:t−1).
Similarly, we can obtain the estimated probability mass function P (Xn+1

t |Xn+1
1:t−1) based on the updated

context tree for Xn+1
t−D:t−1. Every update ends with the updating of the directed information estimator

Î(Xn
1:T → Xn+1

1:T ) = Î(Xn
1:T → Xn+1

1:T ) + f(P (Xn
t+1, X

n+1
t+1 |Xn

1:t, X
n+1
1:t ))− f(P (Xn+1

t |Xn+1
1:t−1)).

(19)

After iterating for T − D times, we obtain the final directed information by taking the average, i.e.

Î(Xn
1:T → Xn+1

1:T ) =
Î(Xn

1:T → Xn+1
1:T )

T −D
. Similarly, we can estimate the inverse directed information

using the same algorithm.

4.3 Damage Detection and Quantification
Given extracted directed information as features, we conduct supervised learning by training different
kernel support vector machines for damage detection and quantification. Here, with directed information
quantifying the information exchanges between two locations, the task includes two aspects: damage de-
tection and damage quantification. The damage detection focuses on detect whether there exists damage
in each story. The damage quantification aims to quantifying the damage severity, which includes clas-
sifying the damage into several levels (classification-based quantification) and directly estimating the
structural drift between two floors during the earthquake (regression-based quantification).

Story drift ratio (SDR) is a common index for identifying structural damages [31, 4, 32, 18]. We
utilize SDR as the ground truth indicator of structural damages. According to FEMA P695 [9], there
are five damage states defined for the structure in terms of the peak absolute SDR (max(|SDR|)) at
each story, which are no damage (0% ≤ max(|SDR|) < 1%), slight damage (1% ≤ max(|SDR|) <
2%), moderate damage (2% ≤ max(|SDR|) < 3%), severe damage (3% ≤ max(|SDR|) < 6%),
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and collapse (6% ≤ max(|SDR|)). For the damage detection, according to SDR level, we divide
the structural damage state into two classes: damaged (0% ≤ max(|SDR|) < 1%) and undamaged
(max(|SDR|) ≥ 1%). For classification-based quantification, we use the aforementioned 5 classes as
the true label. For regression-based damage quantification, we directly use SDR as the true label.

We use kernel support vector machine (SVM) to build the binary-class classification model to detect
the structural damage. Given a set of training examples, SVM builds a non-probabilistic binary linear
classifier. An SVM model is a mapping from data samples to a new feature representation space so
that the examples of the separate classes are divided by a clear gap that is as wide as possible. Kernel
support vector machine here is applied for both damage detection and quantification. Kernel support
vector machine is good at dealing with the high-dimensional features of data through dimensionality
reduction [5, 36]. For damage detection, we use kernel SVM to train the prediction model to detect the
damage at each story. For classification-based quantification, we use multi-class kernel SVM. While
for regression-based quantification, we use kernel support vector regression to estimate the values of the
peak absolute story drift ratio.

5 Evaluation
In this section, we evaluate our approach with both simulated and experimental data. The simulated
data are collected from 5 buildings with different heights under 40 earthquake excitations. To evaluate
the performance of our features, we compare the performance of the same SVM models trained with
our proposed information-theoretic features (DI-based features), raw vibration signals (Signal-based
features), and autoregression coefficients as features (AR coefficient-based features), which is another
widely used feature for building damage diagnosis [26].

5.1 Data Collection
We collect the structural vibration data at each floor from 5 buildings subjected to 40 earthquake excita-
tions. The archetype of the buildings are located in urban California, United States [10]. The simulation
is implemented in an open platform OpenSEES.

There are five archetype steel frame buildings with perimeter steel moment-resisting frames (MRFs).
These buildings have 2, 4, 8, 12, and 20 stories respectively, with a first-story height of 4.6m and a
typical story height of 4m. More details about archetype buildings’ design and geometries are described
in the record [27]. The two-dimensional model of each archetype steel building considers the bare
structural components of the MRFs. In the analytical model, the steel beams are idealized with an elastic
element and a concentrated flexural spring at the center to represent the location of the reduced beam
section. Under cyclic loading, the stiffness of steel components and deterioration of flexural strength are
captured by modeling the springs with the modified Ibarra-Medina-Krawinkler model. For the first and
third mode of all SMFs, Rayleigh damping ratio is assigned with the value of 2%. The natural periods
of buildings are recorded.

As specified by FEMA P695, the Far-Field ground motion set is recorded to evaluate the performance
of the building models. Horizontal ground-motions are scaled incrementally with respect to the first
mode, 5% damped, spectral acceleration Sa(T1, 5%) of the steel frame model through collapse. The
time histories of floor absolute acceleration and story drift ratio under each incremental ground motion
are recorded corresponding to each story of the 5 building models. As an example, Figure 5a and 5b
show the story drift ratio of the 1st story and accelerations at the 1st and 2nd floor of a 12-story building
under the ground motion observed at the Las Palmas Ave., Glendale station during the 1994 Northridge
earthquake.
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Figure 5: The figures visualize the (a) story drift ratio at the 1st story, (b) raw vibration signals at the 1st
floor (blue) and the 2nd floor (red), and (c) directed information from the 1st floor to the 2nd floor (blue),
and inverse directed information from the 2st floor to the 1nd floor (red) of a 12-story building under the
ground motion observed at the Las Palmas Ave., Glendale station during the 1994 Northridge earthquake.
Black box highlights the time interval when damages happen. During damage happening, the inter-story
drift ratio decreases to −0.02, and the absolute value of inter-story drift ratio achieves the maximum. From
Figure (b), it is difficult to directly distinguish the changes of raw vibration signals induced by structural
damages. However, from Figure (c), it is shown that the structural damages induce the difference between
information exchange from 1st floor to 2nd floor and from 2nd floor to 1st floor.

5.2 Feature characterization
We then extract and characterize directed information as effective features to indicate the structural
damages. To extract the directed information, we first quantize the vibration signals. In our case, the
signals are quantized into S = 10 levels. In general, to effectively estimate the directed information,
a large number of quantization level is desirable. This is because with large quantization levels, the
signal amplitude range for each quantization level is small (i.e., higher signal resolution) such that more
information contained in signals can be extracted. However, this level cannot be too large because of

the limitation of T ∗ ≈ SD+1

lnS
. T ∗ is the sufficient sample number for calculating directed information

between two signals. The sufficient sample number needs to be guaranteed to lower the estimation
risk, i.e. T > T ∗, where T is the final sliding window size we select. With the quantized vibration
signals, we obtain the directed information and inverse directed information. By aligning the directed
information and inverse directed information, we obtain the feature for each sample as a vector with
length of 2(l − T + 1).

As an example, Figure 5c shows the extracted directed information and inverse directed information
between the 1st floor and the 2nd floor of a 12-story building under a ground motion observed from the
Northridge earthquake. We can find that between 3.75s and 7s, the absolute story drift ratio increases
significantly and a more severe damage happens to the 1st story, as shown in Figure 5a. As shown in Fig-
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ure 5b, it is difficult to observe the changes by comparing the accelerations collected at the bottom floor
and the ceiling. However, from Figure 5c, we observe that at the time of 3.75s, the difference between
the directed information and inverse directed information suddenly increases and exhibit different trends.
This shows that directed information is an effective damage index for the structural health conditions.

(a) (b)

Figure 6: (a) The logarithmic correlation between the differences between the gradients of accelerations at
adjacent floors and the corresponding peak absolute story drift ratios in a 12-story building. (b) The logarith-
mic correlation between the differences between the gradients of directed information and inverse directed
information on each story and the corresponding peak absolute story drift ratios in a 12-story building. ρ
represents the correlation coefficient between features and the absolute inter-story drift ratio. Compared
the results in (a) and (b), the directed information-based feature shows a tighter positive linear correlation
with the damage states, and thus indicates the potential to be a more predictive features with respect to the
structural damages.

To validate the analytical relationship shown in Section 3, we investigate the correlation between the
directed information and story drift ratio from the collected data. From the Equations 14 and 16, we can
obtain the difference between the gradients of the directed information and inverse directed information
as

∆DI , I(Xn+1
1:T → Xn

1:T )− I(Xn+1
1:T−1 → Xn

1:T−1) =
1

2
ln

det(Pn+1
T +Qnd )

detQnd
.

∆invDI , I(Xn
1:T → Xn+1

1:T )− I(Xn
1:T−1 → Xn+1

1:T−1) =
1

2
ln

det(PnT +Qn+1
d )

detQn+1
d

.

∆DI−∆invDI =
1

2
ln

det(Pn+1
T +Qnd )

det(PnT +Qn+1
d )

·
detQn+1

d

detQnd
.

It is shown that the difference between the gradients is dominated by the structural properties (PnT at
the nth story. To explore the correlation between the directed information and the structural damage
indicator, i.e., story drift ratio, we plot the pair of peak absolute story drift ratio verses difference of
vibrations/directed information for each story in a 12-story building under multiple earthquake ground
motions, as shown in Figure 6a. Figure 6a shows the correlation between the difference of the gradient
of accelerations at two adjacent floors in each story. The logarithmic correlation between the difference
between the gradients of accelerations and the peak absolute story drift ratio is not strong with the cor-
relation coefficient ρ(log |∆Acc(1) − ∆Acc(2)|, SDR) = 0.41. In contrast, the differences between
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the gradients of directed information and inverse directed information have more significant correlation
with the story drift ratio with ρ(log |∆DI−∆invDI|, SDR) = 0.87. This is also higher than the corre-
lation coefficient ρ = 0.69 of wavelet-based features mentioned in the previous study [11]. Therefore,
combining the observations in Figure 5 and Figure 6, we validate our analytical results which show the
effectiveness of directed information as a more powerful feature to indicate the structural damages.

5.3 Results and discussion
In this section, we use kernel support vector machine to detect and quantify the structural damage state
with the extracted directed information and inverse directed information as features. For the benchmark
features based on autoregressive time series modeling of structure’s acceleration response, there are sev-
eral conventional methods for damage sensitive feature extraction. Here, the autoregressive coefficients
are extracted by fitting vibration signals in each floor to the autoregressive model, and the coefficients ex-
tracted from accelerations in the floor and the ceiling of each story are combined as features for damage
estimation. We use the binary-classification accuracy to indicate the damage detection performance, and
5-class classification accuracy to measure the performance of classification-based damage quantification.
Meanwhile, to reduce the overfitting of the model, we used cross-validation to calculate the accuracy of
the model.

Figure 7: The accuracy of binary damage detection, 5-class damage quantification, and within 1 state dam-
age quantification results using the DI-based feature (blue), signal-based feature (green), and AR coefficient
based feature (yellow). The results show that our directed information-based features are more effective to
predict the structural damages compared to other methods.

To obtain sufficient data samples, we conduct data augmentation. We use a high-level sliding window
with the length of 2000 and the stride of 50 data points to process each vibration signal. The length of
the high-level sliding window is decided by the duration it takes for the worst damage to happen from
the starting time point. In each high-level sliding window, we extracted the directed information and
inverse directed information with a local sliding window length of 200 time points, which is 1 second,
as features of each story. Meanwhile, we label each samples according to the peak story drift ratio. If
the peak story drift ratio is less than 0.01, we label the sample as undamaged, otherwise we label the
sample as damaged. For the damage quantification, we label the sample into 5 classes as introduced in
Section 4.3. Finally, we obtain the training dataset collected from the same story at different buildings.

We utilize kernel support vector machine to train the model and utilize cross-validation to evaluate
the performance of our approach. With the high-dimensional directed information-based features, the
problem of “curse of dimensionality” makes it difficult to optimize the damage model in the original
feature space. The kernel trick is applied to reduce the dimensions of feature space to solve it efficiently.
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Figure 8: The story level damage detection accuracy using the DI-based features (blue), signal-based fea-
tures (green), and AR coefficient based features (yellow).

Here we utilize radial basis function kernel-based support vector machine. Both stochastic gradient de-
scent (SGD) and limited-memory Newton algorithms (LBFGS) are applied for computational efficiency.
For the bandwidth and coefficient of regularization term, the optimal values 5 and 0.02 are selected re-
spectively using cross-validation. We use 5-fold cross-validation to obtain the final prediction accuracy
for different stories. To obtain the overall performance, we take the weighted average across multiple
stories according to the corresponding numbers of samples.

Figure 7 shows the damage detection accuracy, damage quantification accuracy, and the damage
quantification accuracy within ±1 damage state with DI-based features, Signal-based features, and AR
coefficient-based features. For our DI-based features, the damage detection, damage quantification and
±1 damage quantification accuracy are 71.49%, 65.96% and 90.59%, respectively. It outperforms other
features on all 3 types of tasks. Compared to the conventional features, our information-theoretic ap-
proach achieve upto 9.8% improvement in the damage detection and 6.27% in the 5-class damage quan-
tification. The accuracy of damage detection is higher than damage quantification, showing that the
difference between damaged state and undamaged state is easier to learn by the model than the differ-
ence among 5 types of damage severity. As for the damage quantification accuracy within 1 state error,
our DI-based features also achieves higher accuracy than other features, which shows that our feature is
more effective and informative to indicate the underlying structural damage patterns.

Figure 8 presents the damage detection accuracy at different stories. Our DI-based feature achieves
higher damage detection accuracy compared to the signal-based method and AR coefficient-based method
except at story 15. Especially, at the 20th story, our method achieves 15.48% improvement compared to
the signal-based method. In lower stories (1 ∼ 4), the damage detection accuracy tends to be low. This
may be because we combine the data from different buildings under different ground motions to train and
test. However, different buildings may have different damage patterns under various earthquakes. For
higher stories (19 ∼ 20), the data is only collected from the 20-story building. Therefore, the training
and test data have similar distributions for higher story compared to lower story, which is one reason that
higher story has higher accuracy. Another other possible reason is that, the noise would attenuate when
propagated to the higher stories, which makes extracted features more effective for damage prediction.
Although the general accuracy tends to be low in lower stories, our method has the most significant
improvements in accuracy in these levels, as shown in Figure 8.

6 Conclusion
This paper presents a new information-theoretic approach to diagnosing earthquake-induced structural
damage. In our method, the process of wave propagation inside the building structure system is modeled
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as the process of information exchanges. We show both the physical insight and analytical proof of the
physical relationship between structural dynamic characteristics and information exchanges. Extracted
from structural vibration signals at each floor, the information exchanges are used as features for damage
detection and quantification in story-level.

Our information-theoretic approach is evaluated in both simulated structural vibration data and ex-
perimental structural vibration data. As a result, our approach achieves upto 15.48% improvement in
damage detection compared to benchmark methods and upto 90.59% accuracy on ±1 damage quantifi-
cation. This information-theoretic approach does not need to assume a particular structural model, or
probability distribution of the vibration data. Furthermore, our approach uses only during-earthquake
data from sparsely deployed sensors for detecting the existence of damage and estimating the actual
story drift ratio at each story in a computationally efficient way.
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